Multiplicity of 2-nodal solutions for a semilinear elliptic equation
نویسندگان
چکیده
منابع مشابه
Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملMultiplicity of Positive Solutions for Semilinear Elliptic Systems
and Applied Analysis 3 Let Kλ,μ : E → R be the functional defined by Kλ,μ (z) = ∫ Ω (λf (x) |u| q + μg (x) |V| q ) dx ∀z = (u, V) ∈ E. (11) We know that Iλ,μ is not bounded below on E. From the following lemma, we have that Iλ,μ is bounded from below on the Nehari manifoldNλ,μ defined in (9). Lemma 3. The energy functional Iλ,μ is coercive and bounded below onNλ,μ. Proof. If z = (u, V) ∈ Nλ,μ, ...
متن کاملSeparation property of solutions for a semilinear elliptic equation
In this paper, we study the following elliptic problem ∆u+K(x)u p = 0 in R u > 0 in R (∗) where K(x) is a given function in Cα(R \ 0) for some fixed α ∈ (0, 1), p > 1 is a constant. Some existence, monotonicity and asymptotic expansion at infinity of solutions of (∗) are discussed. ∗Research supported in part by the Natural Science Foundation of China and NSFC †Research supported in part b...
متن کاملNodal Solutions for a Nonhomogeneous Elliptic Equation with Symmetry
We consider the semilinear problem −∆u + λu = |u|p−2u + f(u) in Ω, u = 0 on ∂Ω where Ω ⊂ RN is a bounded smooth domain, 2 < p < 2∗ = 2N/(N − 2) and f(t) behaves like tp−1−ε at infinity. We show that if Ω is invariant by a nontrivial orthogonal involution then, for λ > 0 sufficiently large, the equivariant topology of Ω is related with the number of solutions which change sign exactly once. The ...
متن کاملMultiple solutions for an inhomogeneous semilinear elliptic equation in R
In this paper, we will investigate the existence of multiple solutions for the general inhomogeneous elliptic problem − u+ u = f (x, u) + μh (x) , x ∈ R , u ∈ H (RN) , (1.1)μ where h ∈ H−1 (RN), N ≥ 2, |f (x, u)| ≤ C1up−1 + C2u with C1 > 0, C2 ∈ [0, 1) being some constants and 2 < p < +∞. ∗Research supported in part by the Natural Science Foundation of China and NSEC †Research supported ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Equations & Applications
سال: 2009
ISSN: 1847-120X
DOI: 10.7153/dea-01-28